What do MOOCs do well?
Lesson 1: try, try again
(then try some more)

RESISTANTVIRUS CLASS

In order to model this effect, we introduce a subclass of SimpleVirus called ResistantVirus. ResistantVirus maintains the state of a virus particle's drug resistances, and accounts for the inheritance of drug resistance traits to offspring. Implement the ResistantVirus class.

```python
class ResistantVirus(SimpleVirus):
    ""
    Representation of a virus which can have drug resistance.
    ""

    def __init__(self, maxBirthProb, clearProb, resistances, mutProb):
        ""
```

You have used 4 of 30 submissions
Lesson 2: little green checkmarks can be surprisingly addicting

```python
from ps8b_precompiled_27 import *

def simulationWithoutDrug(numViruses, maxPop, maxBirthProb, clearProb, numTrials):
    
    """
    Run the simulation and plot the graph for problem 3 (no drugs are used, viruses do not have any drug resistance).
    For each of numTrials trial, instantiates a patient, runs a simulation for 300 timesteps, and plots the average virus population size as a
    """
```
Lesson 3: streamlined is better

MOOCs are more efficient information delivery systems
Lesson 4: go at your own pace (sort of)
Where is there room for improvement?
Feedback is deprived with autograders, feedback is mostly right-or-wrong.
Little creativity in lectures

in-video questions are nice, but little else is different from brick-and-mortar lectures
Course organization

some course teams may initially struggle to meet the demands of a large audience or their own self-imposed deadlines.
21st century learning

20th century campus
2030 Vision

Campus-Wide Renovations
Multiple Partial Building Renovations
Capital Renewal Projects Throughout Campus (Systems, infrastructure, roofs, elevators, plazas, interior finishes, etc.)

January 5, 2012