Four perspectives on MOOCs:

HOW TO MAKE MOOCS REALLY EFFECTIVE

lessons from 20 years of research into online learning

Dr. Tony Bates,
Tony Bates Associates Ltd
Overview

Open learning, online learning, and MOOCs

Standards and innovation

Three basics of online learning:
- Pedagogy
- Learner support
- Costs

Ways to make MOOCs better
open universities: 40 years at least

online learning: 25 years

research: over 50 journals

MOOCs: various designs, but primarily driven by computer scientists

pedagogical research often ignored
Quality standards

for fully online learning (20)

different sectors/countries

based on 25 years of experience/research

quite similar

mainly ‘process’ focused

often unknown or ignored by instructors
Standards versus innovation

Standards:

- Common processes
- Tried and true
- Must be same context

Innovation:

- Unique process (initially)
- Risky
- New contexts

© Paul Foreman
The challenge for MOOCs

good:

- Easy to access
- Minimal cost to learners
- High quality content
- Massive numbers
- Great educational broadcasting

bad

- Massive non-completion rates
- Difficulties with accreditation
1. Pedagogy

Transmission of information vs knowledge construction

Problems with lectures: large amount of research

21st century skills: critical thinking, problem solving, knowledge management, independent learning

Knowledge is constructed, e.g. heat

MOOCs = information transmission
1. Pedagogy

- Deep vs surface learning
- Scaffolding: moving from known to unknown
- Skills need practice and feedback
- Faculty as guide/facilitator
- On a massive scale, knowledge transmission is easy
- Construction/development difficult
Three basics of online learning:

2. Learner support

Structured activities: read, collect, search, discuss, evaluate, do activities require evaluation and feedback.

Instructor’s ‘online presence’ critical: communicate, communicate, communicate.

Knowledge construction requires mainly qualitative assessment/feedback at a high level of subject expertise.
3. Costs

<table>
<thead>
<tr>
<th>Activity</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>11</td>
</tr>
<tr>
<td>Program administration</td>
<td>13</td>
</tr>
<tr>
<td>Course development</td>
<td>13</td>
</tr>
<tr>
<td>Course maintenance</td>
<td>9</td>
</tr>
<tr>
<td>Course delivery</td>
<td>36</td>
</tr>
<tr>
<td>University overhead</td>
<td>18</td>
</tr>
</tbody>
</table>

Costs over 7 years (LMS-based online masters)
MOOC costs

High development costs
$100,000 +) with lecture capture

Moderate maintenance costs
$30,000?)

Low delivery costs: but poor completion rates

How to improve completion rates/quality on massive scale?
1. Pedagogy

More constructivist approaches

- Students find, evaluate, apply information, develop high level skills

- Faculty as teaching consultants: define curriculum/learning outcomes; oversee learner support and assessment

- Use peer-to-peer learning, 'better' computer assessments
2. Learner support

- Increase faculty online presence
 - Tutorial podcasts + text or video clips (e.g. Khan Academy)
 - Judicious ‘massive’ online interventions in discussions/assessments
 - Greater use of well-trained adjuncts (not TAs) supervised by faculty
 - Computer modeling of ‘scaffolding’
3. Redistribute/rethink costs

- Less on development/production
- More on learner support

Free or low cost?

Outsource learner support with quality controls – link to accreditation?

Identify quality issues/high cost areas and seek ‘quality’ computer solutions for high cost areas
Why not rethink a MOOC to...?

- Develop skills as well as content
- Increase learner engagement/activity
- Increase interaction with/between students
- Get students to find/analyze/apply information
- Get students to demonstrate learning through multimedia – and assess
Conclusions

• MOOCs a ‘disruptive’ technology; need to preserve its ‘disruptiveness’
• But cannot afford to ignore 25 years of research in online learning
• Developing high quality learning the challenge
• Need to combine best practices with innovation
Conclusions

• Focus computerization on massifying core teaching functions, e.g. learner support and high quality assessment.

• Developing countries should not settle for ‘second best’.

• Be clear about where human teachers cannot/should not be replaced.

• Computer scientists and educational specialists need to work together.
Questions

Do we need to improve the educational quality of MOOCs?

Can this be done on a massive scale?

So, what kind of research/development would be needed to do this?